If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+20t+12=0
a = -16; b = 20; c = +12;
Δ = b2-4ac
Δ = 202-4·(-16)·12
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{73}}{2*-16}=\frac{-20-4\sqrt{73}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{73}}{2*-16}=\frac{-20+4\sqrt{73}}{-32} $
| 27-3x=-3x+7x | | z/17-226=-212 | | x⁴-2x³+5x²=0 | | 2(x-1)+4x=10(x-3) | | -19-11f=-20+20-12f | | -542=13n+95 | | 35-9d=-46 | | 14m-6=-5m+19m-6 | | 2=2t-8 | | (x+1)/(x+2)=5/3 | | w/7+14=20 | | 5x-2+3x+2x+12=180 | | 18d-20-14d=4d-20 | | 2(x−1)+4x=10(x+3) | | b/6+22=17 | | 1/3k-1/4k=-3 | | -20+1+13j=10j+20 | | r/9-44=-37 | | 2n2-6n+4=0 | | 10v-18=12 | | 18c+8=19+18c+2 | | -39=s/3+-33 | | 7n+1=98-4n | | 3g+6=5g-20 | | 4^x-^2=8^6 | | 4x+72=7x | | 10s-1-18s=-20-7s | | 24=3r/3 | | -3+10b=-163 | | F-12=3f+18 | | 9w+9=-81 | | x^2-10x+20=44 |